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The contact of an elastic layer with an infinite stiffener to which a uniform constant normal load and a
concentrated tangential force are applied, is considered. In the neighbourhood of the point of
application of this force, on the line of the contact of the stiffener with the layer a segment is separated
out, on which the effect of the Coulomb friction is taken into account. Outside this segment the
stiffener and the layer are under conditions of complete adhesion. The problem is reduced to a Prandtl-
type integro-differential equation specified on two semi-infinite segments, for whose solution an
analytical method is proposed. The method is based on reducing the equation to a vectorial Riemann
problem and then to an algebraic Poincaré—Koch system. The latter admits of an explicit solution and
also inversion through recurrent relations that are effective when using numerical computations. The
length of the Coulomb friction zone and the contact tangential stresses in the adhesion zone are
determined. Unlike Melan’s problem [1] the contact stresses have no logarithmic singularity and are
continuous everywhere in the contact area.

The solution of the problem of the contact of a layer with a finite stiffener subject to a uniform
pressure along the whole length and to an extension by forces concentrated at the tips is also obtained.
The contact area is divided into an intermediate zone of adhesion and two zones of coulomb friction.
The problem is reduced to a Prandtl-type integro-differential equation specified on the segment, and it
is solved by analogy with the solution of the equation of the first problem. Such a formulation of the
problem implies that the contact tangential stresses are bounded at the tips of the stiffener and are
continuous at the points of the boundary between the zones of adhesion and Coulomb friction. When
adhesion occurs along the entire line of contact the tangential stresses, in general, have a root
singularity [2]. In the problem of the contact of a plane punch with a half-plane under conditions of
friction and adhesion, the contact stresses at the tips of the punch have [3] a power singularity (that
differs from a root one).

1. THE CONTACT PROBLEM FOR AN ELASTIC LAYER WITH AN INFINITE
STIFFENER UNDER CONDITIONS OF FRICTION AND ADHESION

LET AN infinite stringer {~co<x<+e, 0<y</h} with modulus of elasticity E, and Poisson’s
ratio v, be attached to an elastic layer {—o<x <+e, —b<y<0} whose elastic parameters are E
and D, respectively (Fig. 1). The plane deformation of the elastic layer linked to the rigid
foundation is examined. The normal uniform load of the intensity p and the concentrated
tangential force T (its point of application is x=0) act upon the stiffener. The contact area is
divided into the adhesion zones x <—a and x>a and the Coulomb friction zone |xI<a. It is
required to find the location of the point a and the distribution of the contact tangential
stresses 7(x) over the border line between the stringer and the layer.

tPrikl. Mat. Mekh. Vol. 57, No. 1, pp. 137147, 1993.

159



160 YU. A. ANTIPOV and N. KH. ARUTYUNYAN

L4

P
1 Y 3 Iy 1 19
“a, _-—f.’z I
X OX XXX XX ATTXTRXT X ATX XX
-b
Fic.1.

The equation of equilibrium of the stringer leads to the following expression for its axial
deformation

1-
20 == [_7; T (§)dt - TH()] (11)

where H(x) is the Heaviside function. The equilibrium of the stringer ensures the condition
T r)ax=T 12)

Consider the problem of plane deformation of the elastic strip
A2U(x, y) =0, |x| <o, —b <y<0
Oyly=0=0(x), Tayl y=o =7 (x), lxl <oo (13)
uly= - p=0, vly=—p =0, x| <oo

Here U is the Airy function, llx, vll is the vector of displacements, and ¢, and 7,, are the

components of the stress tensor. By using a Fourier transformation we obtain the following
relation for the horizontal deformations of the strip for y=0

l+y =
€,(x,0) = E J [(kk_sh*ab —a®b?) 63 — Kk, (kshabchab + ab)ird] X

I o
X [d(@] e **da, d(a) =ksh®ab +a?b® + k2 (1.4)
K, =%k t1), k=3-4p, log, 7 ll= f°° la(x), 7 (x) I &' **ax

— 0o

We have o(x)=-p, |xl<e since the stiffener has no bending rigidity. The tangential and
normal stresses are related by the condition (u is the coefficient of friction)

T (x) =up, Ixt <a
in the slippage zone, but we have 7(x)<up, !xI>al in the adhesion zones since the tangent1a1
contact stresses are insufficient to cause slippage. Moreover, the horizontal deformations € 9(x)

and € (x, 0) of the stiffener and of the strip have to be identical, i.e.

€3(x) =ex(x,0), Ix| >a 1.5)
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The stresses at the point x =a have to be bounded.
We substitute expressions (1.1) and (1.4) into relation (1.5), take into account that o=
—2mpé(a) and introduce the new unknown function
x(2) =bT 't (—a+bt) (1.6)

As the result, we obtain the following Prandtl-type integro-differential equation

t o )\
Jx(r)dr +vy [ S@-7)x(r)dr =H(t —7) (1.7)
t € (=2, 00U\, ), y=2hE; (1 —v*)b 'E"' (1 —»}) !, A=2ab"! (1.8)
1 = kshacha+a upb
S()=— 3 sinatdae, x(t) =po (0<t <)), po =
7 o xsh®ata

+K5

We will seek a solution of Eq. (1.7) in the set of functions bounded at the point =0 and
t=A. Let us introduce the one-sided functions

(t)={x(t), t<0 _{x(t), r>2A
X~ 0, :1>0° O o <a
1,0 <r<a
ro={, e oy X0 T O @ +pof @), 11 < 19)

and extend the definition of Eq. (1.7) over the entire real axis using the function yx,(t) which is
unknown in the interval O<f <A and vanishes outside this interval. We have

t o0 A
Ix()dr+y [ S(t—1)x(r)dr =H(t—2—) +x0 (2), 1t] <e°

Consider the Fourier transforms

t(@) = [xo (1)e'*dr, 7 (a) =fi xo (\+ 1) e dr
0 _
&% (@) =f x(\+ e’ dr, B3 () = | x(1)e'*dr (1.10)
0 -— 0T

The functions ®;(a) are integer and ®}(a) are analytic in C*: Ima=0. Furthermore, if we
take into account [4] the formulae

- lat g, - _
V[H(t)]——fa° H@t)e'*dr 70

t i
VI x(r)dr) -~ —— [95(a) +e!**% (@) + —2 'er _1)]
oo o ’0 ia
and, by virtue of (1.10), the relation
@} (@) =¢'* o7 ()
we obtain the vectorial Riemann problem

G(a) [95 (@) + ¥ e (a) ¢

I.7o (A —e¥NY] = —jadf(a) +eFIeM?2
i
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IR (1.11)
G(a) =1 + ya(kshacha + a) (ksh’a + o + Ki)-l

The factorization of the function G («) is defined by the relations

G(0) =K* (@ )X* (@)K (@)X (@), X* (@) = [X()]*', a€C? (1.12)
L (1Fia/n) a o d
- = % e = — - 1
K*(a) = (my) Tk Tiafm) X(a) =exp( g glnGo ) 7@ ) (@ #0)
G )=1+tha atha —a? — k2 X% (0) =
o (@ ya  ksh’a+k2+a®’ ©) =

We substitute the first formula of (1.12) into the boundary condition (1.11) and obtain

K* (@)X* () [5 (0) £ (i0) 'po] 7 (i) "' po = [KT (@ X* ()] {—ia®( (a) +

+eFlaN2_ FIaNG (q) [F () ¥ (i) "'po]} F (19) " po (1.13)

In C* the left-hand side of the last equality is analytic and the right-hand side has a
denumerable set of poles that are identical with the poles a=%if, (m=1,2,...) of the
function G (). Here p, is the real root of the function

h(B) =«i — B —ksin’p

and B,,,; = 4Ib,—(-1Yaj] (m=1,2,...; j=0, 1), and the quantities z, =4, +ib,, are the roots
of the equation [5]

2kchz +z2 +k* +1=0
that are evaluated according to the iterative formula

28 =2mi + mp 1) (k=2,3,..), 2§ =2mni (114)

p@)=—-k1(*+KP+1) —e7*

Making use of the functions

o A}
Vi) = T—0
n=1 atiB,,

we neutralize the poles on the right-hand sides of equalities (1.13) in C*. Taking account of the
fact that the tangential contact stresses 7(x) are bounded at the points x=ta and making use of
(1.13) we find the solution of problem (1.11)

N PR 1%V e + ooy Po e'**G (a)
Y} (o) ” [—e +K* (@)X (@) [¥Y (w0 » 1+ K- @X-@

X T¥* () + (ie) 'pol} , ®7(x) =7 ] (a) (1.15)

won_ _ Do ¥ @+ @) 'pe ... Po . ¥(®) - (i0)'po
i) = ia K* (@)Xt (o) » $1(9) i« K- @X (o)
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For the functions ®{(@) and ®;(a) to be analytic at the point a=0 it is necessary and
sufficient that the condition

i__eiaklz +K* (a)x+ (a) [‘I"(a) _ (ia)"po] +elaAK—-(a)X-(a) X
X [¥* (@) + () 7'pol} =0 =0 (1.16)

should be satisfied.
If we take into account the expansions in the neighbourhood of the point a=0

G(a) =1+0(e?), K* (¢) =7*[1 —icr™2In2 + 0 (0?)]
X(@) =7 % [1 —iody + 0(e*)], &0

1 = Gy(n) dn
= Gm = (117)

we obtain
¥ (0) +¥-(0) + (A+2dp + 41 n2)pe =1 (1.18)

from (1.16)
Now let us consider the condition of equilibrium (1.2) of the stringer. Making use of (1.6),
(1.9) and (1.10) we have

3 (0) + 93 (0) +por=1 (1.19)

instead of (1.2)

On account of (1.17), the substitution of formulae (1.15) into equality (1.19) leads to relation
(1.18). Thus, condition (1.16) for the functions ®{(a) to be analytic and condition (1.19) of
equilibrium are identical and lead to (1.18).

The functions ®;(a) and ®;(a) given in (1.15) have poles at the points i, and ~if, (n=1,
2,...) of the half-planes C* and C-, respectively. In order to eliminate the poles it is necessary
and sufficient that the conditions

res {e* NG (o) [K* (@X* (@] 77 [¥* (@) £ (i) 'po] +¥7 ()} =0

a=ti{f,

n=1,2,.)

should be satisfied. These conditions are equivalent to the following infinite Poincaré-Koch
system of algebraic equations

+ ‘}‘\8 Po ot A:, _
Ap=— 8™ r(t— + T ) (n=1,2,.)

Bn m=1 f,+f,
Y8y r(l "'ﬂ'“lﬁ) B o dx
A = K = %_______—ﬂ__ X = ___._2... — e
nT KKt (™) Therp) n exp{ . ofInGo(x) o) }

(1.20)

which obviously yields the relation A; = A, = A,. The coefficients A, satisfy the system

dy=a M P 5 Am
" Br  m=1 fptBm

that admits of the solution specified by the rapidly converging recurrent relations

) (n=1,2,..)
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Ap=e™n T g g,=--2 2 pp =4, §%p-j_ ¢~ ABj
k=1 Bn i=t BB
and also admits of the explicit solution
A 2 Ale_)‘ﬂx p
anp = —8ppo [— + ( ) +
T T Bat BB, ButBr 2B
p—2 c(0) —1 a(1) ~1 o(m—1)—-1 h A
> S ki I ha.. ™ o (m)
m=1 Ji=1 Ja=1 im=1 Bo(m) Bjm+6o(m)
A,
m ———’m———exp( 7\3],,,) Om =P —ji—=im, 0(0) =p, jo=n
ﬁlm—l +BI

The parameter 4 (and, of course, a= Y% Ab) is taken from condition (1.18) which is trans-
formed into the equality

= A
2 T2

n=1 f,

+ (A+2dy +4n7 ' In2) po =1

Since A, = A,(A) the last equality is a transcendental equation in A.
We will obtain an expression for the tangential contact stresses when |xI>a (if |xl<a then

7(x) = up). By virtue of (1.6) and (1.10), we have
T(x) =Tb™'x(d™' (x +a))

. { 2o . K* (X' (a) [ @ ___Pio._]} e iy 1 <0 (1.21)
ia G(®) ie

— oo

L o= P K@X @ .
X(>\+f)—2n _J;o {— ia + @ [¥* (o) + a]}e da, t>0

Denote the zeros of the function G(e&) in the domain C* by *i§, (n=1, 2,...). The first
root §, is real, but the other roots are complex

S2m+j =W ldm —icm (1] (m=1,2,..; j=0,1)

The numbers z,, =c, +id, are evaluated by iterative formula (1.14) in which the function
¢(z) should be taken as

e(z) =1 +%@E) -+ N2 — (kP + DT = (1= Y%yz)e™?)

Furthermore, let

l

rQq+a1s on ax
—-(——-—L X0 n =€Xp {—‘ J InGy (x)—'—'—“aTI

KO = TT')’)%
" R )
G, = Yen[%KSin28,, + k8,c0828,, + 28, + 28 42, (axsin28,, + 8,) | (1.22)

=k -8, -« sin®3,) 7!

If we compute the integrals in (1.21) by using the theory of residues we find the following
formula for the contact stresses



A contact problem with friction and adhesion for an elastic layer with stiffeners 165

K83 A
P ma )eﬁn(a—lxl)/b’ Ixl >a
m — Yn

By virtue of the Tauber-type theorem, (1.15) implies the continuity of the tangential stresses
7(x) at the points x=*a, namely, 7(xa)= up.

2. THE PROBLEM OF THE PRESSURE OF A FINITE STIFFENER ON AN ELASTIC
LAYER WITH FRICTION AND ADHESION

Let us consider the plane deformation of the elastic layer {~eo < x <+eo, ~b <y <0} linked to a
rigid foundation and stiffened by the finite stringer {~a<x<a, —b<y<0} (Fig. 2). The cons-
tants of elasticity of the layer and the stiffener are the same as in Sec. 1. The stiffener is
impressed into the layer by a normal uniform load of intensity p and is stretched by forces P
and P, concentrated at the tips. The contact area is divided into the adhesion zone {-¢, <x<c,
y=0} and two zones {-g <x<c, y=0} and {c,<x<a, y=0} in which Coulomb friction acts.
Let us find the points —c, and ¢, and the contact tangential stresses t(x) along the line
- <X<C,

The expression for the axial deformation of the stringer corresponding to (1.1) has the form

1—v

2 X
e20) = ———[ [T (®)d +P1] @

"

in the case considered. For the stringer to be in equilibrium it is necessary that the condition

a
[ 7(x)dx=P,-P, 22)

-a
should be satisfied.
In the case when

. {0, x| >a {0, x| >a
= s T. =
Y o xi<d Y lr), Ixl <a

the solution of problem (1.3) for the layer, by virtue of (1.4), has the form

2(1-»%) & x- (I+v)p =
: M =- Ry ds — ~dax/b
ext0) =200 F s (T yrar - I T g @t
23
© @ el®o _ g-fad, kxk sh?q — o? a @3)
) = Q) ——— = = = e
&o & ia £ kshla+a? +k2 7 %o b

where S(f) is the function specified in (1.8). If we substitute expressions (2.1) and (2.3) into
relationship (1.5), change the variables and introduce the notation

r=x/b+ N, n=Eb+ 2, Ay =c, /b, =c, /b
x(#) =br (-¢y + br) 2.4)

we obtain the Prandtl-type integro-differential equation
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Fic.2.
z A+ A Yo I
[ xtydn +y © [ S -n)x(m)dn= Py - —= [ go(@)e'*Me"* g4
1= ) 2 e
0<r <N A=A +2g, Yo =Wepby(1 —»)~! (2.5)

where yis the parameter specified in (1.8).
Since the conditions of Coulomb friction are satisfied in the zones —a<x<-¢, and ¢, <x<gq,
we have

T(x) =rup, —a<x<-cy; 7(x) =up, &2 <x<a (2.6)
(u is the coefficient of friction). The different signs in front of up show that slippage occurs in

the opposite directions when x belongs to the zones (-4, ¢,) or (¢, a). Let us extend the
validity of Eq. (2.5) over the whole real axis. To do so we introduce the functions (T) and

x(m),0<n<A o=bup
-0, A — A <1<0 [1,0<t<)\
= ) =
Xo (M) 5 A<n< Ao * Ny fo(2) Lo, £ 0,0 @mn

0, ¢ (4 —do, Mo+ M)

We then obtain

t o0 Yo .
S Xo(dn+y [ S —n)xomdn=—fo(t)P1 —— [ go(@e'*™e-"*tda+

1—}‘0

+x_() +x. (1), o<t <o

Let us use notation (1.10) for the functions ®;(a) and take into account the Fourier integrals
2% (@ =[x, (+peietay, ®i(@) =  x_(©)e'*tas

By virtue of (2.7) and (2.2), we have

1
VI xodnl =—— 1l Ce e 2P — 01 @) ¢

1 0
+ (iOl)_IU[l _eioz(?\x —Xy) __etot(h.l +2,) +eio¢)\n
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In a manner similar to that of Sec. 1 we obtain the vectorial Riemann problem
G(a) [P (o) — (ioz)“o(l — et =) _ pia(A+X) +eia}\)] =
= —ia[®7 (o) +e"*MP5 (@)] +iae™* P * R @y _P) + ("M —1)Py +
+ Y080 (@ e'*Mia, ¥ (@) =e'*Pi(a), ~»<a<+ (28)

We take into account formulae (1.12) and introduce the functions
¢ (@) =% (@) + (i) ta(: 1 (A +Ro) _ glary
¢1(@) =07 () + (i) tae 1o+ X)) _ p-laky
¢ (@) = —ioa®] (o) elalrg =2;) Py —P)) +P,, v3{(a) = —jad);(a) P,

- it . = iB:
Vi@ =3—"1 0 @=3 2 2.9)
n=1 aif, n=1 atid,

The quantities +if§, are the poles of the functions G(a) and g,(a), but *i§, are zeros of the
function G(«) that were considered in Sec. 1. The coefficients A* and B* will be evaluated
later. We rewrite problem (2.8) in the form

K* (@)X (@) ¥4 (0) — (i) 'o-e G (@) ] 7! [#} (¢) + Yog1 (@) e’ Po—2) |} 4

+(®) 027 (a) ~¥* (@) = [K (DX (@] {o5(0) —e-"*P—2D [(ja) oG (a) +
+Yg1 (@]} + (ja) 'o-27(a) - ¥* ()

K™ (@X (&) {¢7(0) — (i0) "o [G(@)] ™" [#7 (@) — Y081 (@)e- @ Po—A ]} +

+ (i) 10— Q" (@) =¥ (@) = [K* (@)X (@)] 7 {¥r(@) +e'*Po=2) [_(ia) " l0G(a) +

+ 781 (@]} + (o) to - 2 (a) - ¥ () (2.10)

Let us choose the coefficients A; in such a way that the functions ¥*(ax) and ¥ (@) elim-
inate the poles of the right-hand sides of equalities (2.10). We then have (n=1, 2,...)

res {IK7@X @] e !> M) [(10) oG (@) + 081 (@] — ¥ (@)}

a=—

res {[K* (@)X (@] "e'*Po=2) [_(i2) "2 0G (@) + Y081 (@)] — ¥~ () }

a=if,

1]
o

Il
o

whence we find the explicit formulae for A*
A;:e-ﬂn(ho—-Al)qn" A’—'=e-ﬁn(K°—A,)qn

1 kk_sin?g,— 2
S—— (Y0 + Y ————
n 2K X, 9+ %o Yksin2B, + 8, )
The values K, and X, were specified in (1.20).
Let the choice of the coefficients B; ensure the validity of the principle of continuity.
According to Liouville’s theorem and because of the fact that the stresses 7(x) are bounded at
the points x=—c, and x=c, we then find the solution of problem (2.8)

w; (@) e wy (@ o(1+e’)
K* (@) X* (@) K= (@)X (@) i

®} () = , ®7 (0) =~ 122} () (2.11)
P} (@) = - (i0) ™! [K* (@)X (@) ws (@) +e'*Po—R) [(ia) "10G (a) —
- Yog1(a) +P,—P,] - P, }
®3(0) =— (i) ' {K~ (@)X (@) w;(a) +e-"*Po—M) [(10) "10G (a) + Yog1 () ] +Py}
wi (@ == () "0+ 27 (@) +¥*(a), wz () = — (&) 'o+ R*(a) + ¥ (a)
from (2.10) and (2.9).
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The functions ®(a) and ®;(e) are analytic at the point « =0 if and only if the conditions

K (@)X (@ w3 (@) +e'* P =2 [(ia) 106G (a) — Y081 (@) +Py —P2] ~Pilge =0

(212)
(K" (@X (@ w; (@ +e- P~ [(i0) 10 G (@) + 7081 (@] + Py} 4=0 =0
hold. Taking formulae (1.17) into account we can rewrite equalities (2.12) in the form
A =de— 071 (P + AL - BY)
kz =d* —0'1 (Pz +A; b B;)
2 o At 00 B:t
de=do +— 2 + Ay, Af= T B T = (2.13)
L n=1 f, n=1 §,

Equalities (2.13) ensure not only that the functions ®;() are analytic but constitute the
non-linear system for finding the parameters A, and A,.
System (2.13) also implies the condition of equilibrium (2.2).

Actually, if we take into account relations (2.4), (2.7) and (1.10) we can write condition (2.2) in the form
[0, () - () ~to[1 —e'®Mi—ho) _iay*h) g ledyy p _p,
a=0
which, by virtue of (2.11) and (1.17), is equivalent to the following condition
AL -AL+BY - Bi+a( —N,) =P, —P,

but this equality is obtained from (2.13) by subtracting the second equation of (2.13) from the first.

We will now choose the coefficients B;. For the functions ®;(a) to be analytic at the points
a=1id, e C* the infinite system of Poincaré—Koch algebraic equations

: = B,
Bi=etm AL+ X —") (1=1,2,.) (214)
m=18,+8,,
o (K o 5 _Am
An_ s fn= + Z
G" Bn m =1 67!——6"1

must be satisfied.
The quantities K°, X° and G, were specified in (1.22). System (2.14) may be effectively
solved using the recurrent relations

0
2 _ . 6,N 4 t _ A0t
B,=e-°n kzobnka bro =80y

-A8;j

bt ___AO % € ! b;
np nj=l 5n+8i 1, P -]
Let us obtain formulae for the contact stresses
1 b 1 o0 ,
T@) =— x(—+N), x(t) =—— [ ¥} (a)e-'*"da (2.15)
b b PX G-

If we substitute (2.11) into (2.15) and use Cauchy’s theorem we find
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2 KO)I(O [Brgdn(xtec /b _p3 efnl—x*el) 2], —ey <x<e¢z (2.16)
n=t °

n

o |

T{x) =

In the case when P, =P, the relations
¢y =C2 =¢C, kl =7\2 =1BA

= A
n=fn=— + —,
8y m=1 Bp—By

hold and, as a result, the infinite system (2.14) with respect to B;, = B, = B,, is simplified

= B
Cp-tmAAY(F ;R Om
B,=e ,,(fn et an+5m )

and formula (2.16) for the contact stresses becomes

2 = Bn s
7(x) =— X ————e” " "nsh
( ) b n=1 K‘,’,Xﬁ’,

8
;,x , <<x<e¢ (2.17)

By virtue of (2.6), formulae (2.16) and (2.17) lead to the conclusion that the tangential
stresses 7(x) are continuous at the points x=—¢, and x=c, and are bounded at the tips x=*a
of the stiffener.

3. NUMERICAL COMPUTATIONS

For all actual values of the parameters of the problem of the infinite stiffener numerical analysis has
revealed the existence and uniqueness of the solution of the non-linear equation (1.18) defining the
variable A. Moreover, the inequality |7, (x, 0)i<ulc (x, 0)| holds in the adhesion zone. Plots of the
contact stresses T7'7(x) for v,=v=03, E,/E=2, b=1, h=001, p=1 are shown in Fig. 3 for the
different values of the coefficient of friction u=0.1 (curve 1), u=0 (curve 2) and p=05 (curve 3).
Below we present the parameter A=2a/b as a function of g for the same values of the parameters of the
problem

M 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
A 1062 5.62 3.95 312 262 2,28 2.04 1.87 1.73

as a function of E,/E with g#=0.3 (the other parameters are the same)

EJE 01 1 2 5 10 100
A 420 407 395 366 327 132

and as a function of b with =03 and E,/E=2

b 1 2 3 4 5 1 10 15 20
A 3.95 240 1.89 163 148 1.31 1.18 1.08 1.03

Calculations were also carried out for the problem of the extension of a finite stiffener. Plots of the
contact stresses 7(x) for v,=v=03, E,/E=2, a=1, b=1, h=00l, p=1, u=03 are shown in Fig. 4.
Curve 1 is for P, =P, =0 (in this case, 4, =A4,=0.7656 and do not depend on p), curve 2 is for
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P =P =01, (4, =1,=04945), and curve 3isfor P,=0, P, =01 (A =0.7926, A,=04592). A, and A, are
plotted against B, with P, =0 (curves 1 and 2, respectively) and a plot of A, =4, against P, =P, (curve 3)
is shown in Fig. 5. The computations were carried out for the same values of the parameters of the
problem as in Fig. 4.

In the case P, =P, the non-linear system (2.13) always has the solution A, = A,, and moreover, it is
unique. If P, # P, the quantity P, must satisfy the condition P* < P, < P, ** for arbitrary P,. In particular
for the same values of the parameters v, v,, E/E, a, b, h, i and p that were adopted when plotting Figs 4
and 5, system (2.13) is solvable when P, =0 if and only if 0= P, <0475. When P, =0475 we have 4,=1
and A, =-0.65, but when P, >0.475 a value of A €(0, 1) that satisfies system (2.13) does not exist.
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