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The contact of an elastic layer with an infinite stiffener to which a uniform constant normal load and a 

concentrated tangential force are applied, is considered. In the neigbbourbood of the point of 

application of this force, on the line of the contact of the stiffener with the layer a segment is separated 

out, on which the effect of the Coulomb friction is taken into account. Outside this segment the 

stiffener and the layer are under conditions of complete adhesion. The problem is reduced to a Prandtl- 

type integro-differential equation specified on two semi-infinite segments, for whose solution an 

analytical method is proposed. The method is based on reducing the equation to a vectorial Riemann 

problem and then to an algebraic Poincare-Koch system. The latter admits of an explicit solution and 

also inversion through recurrent relations that are effective when using numerical computations. The 

length of the Coulomb friction zone and the contact tangential stresses in the adhesion zone are 

determined. Unlike Melan’s problem [1] the contact stresses have no logarithmic singularity and are 

continuous everywhere in the contact area. 

The solution of the problem of the contact of a layer with a finite stiffener subject to a uniform 

pressure along the whole length and to an extension by forces concentrated at the tips is also obtained. 

The contact area is divided into an intermediate zone of adhesion and two zones of coulomb friction. 

The problem is reduced to a Prandtl-type integro-differential equation specified on the segment, and it 

is solved by analogy with the solution of the equation of the first problem. Such a formulation of the 

problem implies that the contact tangential stresses are bounded at the tips of the stiffener and are 

continuous at the points of the boundary between the zones of adhesion and Coulomb friction. When 

adhesion occurs along the entire line of contact the tangential stresses, in general, have a root 

singularity [2]. In the problem of the contact of a plane punch with a half-plane under conditions of 

friction and adhesion, the contact stresses at the tips of the punch have [3] a power singularity (that 

differs from a root one). 

1. THE CONTACT PROBLEM FOR AN ELASTIC LAYER WITH AN INFINITE 
STIFFENER UNDER CONDITIONS OF FRICTION AND ADHESION 

LET AN infinite stringer ( -00 < x < +oo, 0 c y < /I) with modulus of elasticity E,, and Poisson’s 
ratio v, be attached to an elastic layer ( --QQ < x < +oo, 4 < y < 0) whose elastic parameters are E 
and D, respectively (Fig. 1). The plane deformation of the elastic layer linked to the rigid 
foundation is examined. The normal uniform load of the intensity p and the concentrated 
tangential force T (its point of application is x = 0) act upon the stiffener. The contact area is 
divided into the adhesion zones x <-a and x > a and the Coulomb friction zone Ix Ic a. It is 
required to find the location of the point a and the distribution of the contact tangential 
stresses Z(X) over the border line between the stringer and the layer. 
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FIG. 1. 

The equation of equilibrium of the stringer leads to the following expression for its axial 
deformation 

e?&J) = g t _f_WE - m(x)1 
0 

(1.1) 

where H(x) is the Heaviside function. The equilibrium of the stringer ensures the condition 

_< 7(x)dx=T (1.2) 

Consider the problem of plane deformation of the elastic strip 

A’U(x,y)=O, 1x1 <“, -b <y<O 

Q&o ‘O(X), 7J y=o =r (x), I-4 < O” (1.3) 
r.&= - b =o, Uly=_b =o, 1x1 < O” 

Here lJ is the Airy function, Ilu, 1~11 is the vector of displacements, and 6, and zIY are the 
components of the stress tensor. By using a Fourier transformation we obtain the following 
relation for the horizontal deformations of the strip for y = 0 

1tv m 
E,(X, 0) = - 2nE _I, [(KK-sh’CYb - ol*b*) ‘IO, - K + (KshLYbch&b t &)i~;] X 

x Id( - le-‘axdCt, d(a) =Ksh*& t cy*b* t Kt (1.4) 

K,=%(K+l), K=3-4V, lI~~,~~ll= 7 Ila(x),r(x)lIei”x& 
_m 

We have a(x) = -p, Ix I< = since the stiffener has no bending rigidity. The tangential and 
normal stresses are related by the condition @ is the coefficient of friction) 

r(x) =&JP, 1x1 <a 

in the slippage zone, but we have 7(x) c cup, lx I> a I in the adhesion zones since the tangential 
contact stresses are insufficient to cause slippage. Moreover, the horizontal deformations E:(X) 
and E,(x, 0) of the stiffener and of the strip have to be identical, i.e. 

E:(X) =cx(x, O), Ix1 >a (1.5) 
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The stresses at the point x = a have to be bounded. 
We substitute expressions (1.1) and (1.4) into relation (1.5), take into account that ai = 

-27@(cr) and introduce the new unknown function 

X(t) =bz-‘T(-Q+bt) (l-6) 

As the result, we obtain the following Prandtl-type integro-differential equation 

_J$r)& t r_&s(t--7)X(T)& =H(t -p) (1.7) 

t E (--,O)U(X,=), 7=2hEo(l -v*)b-‘E-q1 -vi)-1, h=2ab_’ (1.8) 

I.lpb 
sinat&, x(t) =po (0 < t < A), po =- 

T 

We will seek a solution of Eq. (1.7) in the set of functions bounded at the point t = 0 and 
t = A. Let us introduce the one-sided functions 

x- 0) = 
i 

x(t) 3 t < 0 ( x(t), t> h 
0, t>O’ x+(t) = 

0, t<h 

fo (t) = ( l,o c;t<X 

0, t 4 (0, A) ’ 
x(t) =x-(t) +x+(i) +pof(t), ItI < 00 (1.9) 

and extend the definition of Eq. (1.7) over the entire real axis using the function x,,(t) which is 
unknown in the interval 0 c t c 1 and vanishes outside this interval. We have 

jX(WT ‘7-l so -T)X(TM =H(t -f) +x0(t), Itl <- 

Consider the Fourier transforms 

@b: (4 =/x0 (t)e tardt, Qi (f2) = j X0 (X + t)efa’dt 
-A 

@>(a) =jx(X+ t)e iorrdt, @;(a) = f x(t)e’a’dt 
0 -0D 

(1.10) 

The functions @:(a) are integer and @i(o) are analytic in C’ : ImcSO. Furthermore, if we 
take into account [4] the formulae 

V[H(t)] = 7 H(t)e%t = ---& 
-0 

vi i X(T)dTl -- --& [%(01) 
PO t e’%& (a) + icw- (e IcYA - l)] 

-0D 

and, by virtue of (l.lO), the relation 

we obtain the vectorial Riemann problem 
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- -<cf<+= 
G(o)=1 tya!(ksharcha!tor)(ksh2a!tcr2 t,:)-l 

The factorization of the function G(a) is defined by the relations 

G(a) =K+ ((u )X+(or)K-(ol)X-(cr), X* (a) =[X(cu)]“, crEC* 

(1.11) 

(1.12) 

Is*@) = (n# 
r (lw+r) 

r(% Ticu/n) ’ 
X(a) =exp( 5 [ lnG, (q) -?- 

Tj2 -(Y2 
) (af0) 

tha 
G,(a) =l t- t 

athcz - a2 - K: 
X’(0) =7-s 

w Ksh2& + K: + cY2 ’ 

We substitute the first formula of (1.12) into the boundary condition (1.11) and obtain 

K*(a)X*(&) [@i(U) + (iLY)-‘PO] 7 (ia)-‘Po = [Kr(ar)Xr(~)]-‘i-icu~~(a) t 

+ eTiw=_ e r'ahG(~) [@;(a) T (ia) -‘po] ) T (KY)-‘p. (1.13) 

In Cf the left-hand side of the last equality is analytic and the right-hand side has a 
denumerable set of poles that are identical with the poles a = Tip,,, (m= 1, 2, . . . ) of the 
function G(a). Here /& is the real root of the function 

h (0) =K: - 0’ - Ksin2/3 

and pti+j = X[b,,, -(-l)ia,,,i] (m= 1,2,. . . ; j = 0, l), and the quantities z,,, = a,,, +ib,,, are the roots 
of the equation [5] 

2KChZ +Z2 •t K2 + 1 =o 

that are evaluated according to the iterative formula 

zck) =27mj t lnlp($- “) (k=2,3, . ..). z$‘) =277ni n (1.14) 

cp(z) = -K-l (Z2 t K2 t 1) -e-’ 

Making use of the functions 

0~ iAi 
‘t”(a) = z- 

n=i cr+i& 

we neutralize the poles on the right-hand sides of equalities (1.13) in C*. Taking account of the 
fact that the tangential contact stresses r(x) are bounded at the points x = +a and making use of 
(1.13) we find the solution of problem (1.11) 

@:(a) =-!-i--e ‘w= 
PO dahG (a) 

+ K+ (NX+ (4 P- (4 -x I + K _ (a)x_ (al x 
a 

X I*+ (a) + (ia)-‘PO] 1 , *T(a) =ewfah@: (a) (1.15) 

a$(*)=-~ t \Ir’ (a) + (ia)-‘po 

K+ (or)x+ (a) ’ 
a,, (fy) =.-EL t 

*-(a) - (ia)-lp0 

icr ia K- (a) X- (a) 
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For the functions @r(a) and Q;(a) to be analytic at the point 01= 0 it is necessary and 
sufficient that the condition 

1-e faAI2 t K+ (a)X+ (a) [‘t’(a) - (ia)-‘PO] +efaAK-(o;)X-(a) X 

X [v (a) + (ia)“‘p0] 1 a=~ =O 

should be satisfied. 

(1.16) 

If we take into account the expansions in the neighbo~h~ of the point a = 0 

G(a) ~1 + O(a2), K+ (a) ~7% [l - imr-‘2fn2 + O(a*) J 

X(cu) =r”[l -io& tO(a*)], rx+O 

(1.17) 

we obtain 

Y+ (0) +Y-(0) t (A+ 2d* +4n-‘hl2)po =l (1.18) 

from (1.16) 
Now let us consider the condition of equilibrium (1.2) of the stringer. Making use of (1.6), 

(1.9) and (1.10) we have 

*j(O) +a: (0) tpoh=l (1.19) 

instead of (1.2) 
On account of (l-17), the substitution of formulae (1.15) into equality (1.19) leads to relation 

(1.18). Thus, condition (1.16) for the functions Q):(a) to be analytic and condition (1.19) of 
equilibrium are identical and lead to (1.18). 

The functions @:(a) and @;(a) given in (1.15) have poles at the points @I,, and -iP, (n = 1, 
2, . . .) of the ham-plies C’ and C, respectively. In order to eliminate the poles it is necessary 
and sufficient that the conditions 

ws {eiicuhG(a) [#?(a)X*(ol)]-* [**(a) + (iu)-lpo] tYx(ol)l =O 
CI=if& 

(n=1,2, *..) 

should be satisfied. These conditions are equivalent to the following infinite Poincare-Koch 
system of algebraic equations 

A;= - A#%(+ + E 43 
- ) (n=l,2,...) 

n m=t idiom 

which obviously yields the relation 4 = A; = A,,. The coefficients A,, satisfy the system 

#I 
-) (n=1,2,.*.) 

m=l &+iL 

that admits of the solution specified by the rapidly ~nverging recurrent relations 
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An=e-% jj Unk, ano = - *,po 
k=l 0” 

IInp e_APj 

and also admits of the explicit solution 

a,P= - 

P-2 o(Oj - 1 o(1) - 1 A 
t ZI Iz hl 

o(m-I)-1 h m 

Z hz... c: a(m) 
1 

m=l j, =1 j7 =1 lm= 1 P o(m) 4m + km) 

h,= *ii, 

4m-1 +hm 
exp(-hgjm), urn =p-jl--...-jm, o(0) =p, jo=n 

The parameter A (and, of course, a=xAb) is taken from condition (1.18) which is trans- 
formed into the equality 

* An 
2 z- 

n=l on 
t (X t 2d0 t 4n-’ ln2)p, = 1 

Since A,, = A,,(A) the last equality is a transcendental equation in A. 
We will obtain an expression for the tangential contact stresses when Ix I> a (if Ix I< a then 

T(X) = w). By virtue of (1.6) and (l.lO), we have 

T(X) =Tb-l~(b-‘(~ta)j 

1 

( 

PO 
X(f) =r r” i(yt -03 

K+ (,Qa) [JI- (a) -“- ] ] e-i~rda, 1 < 0 (1.21) 

1 
x(ht t) =- 

K- (OL) x- (ol) 
2= 1 (- z t -;(o-- [‘y’ ((Y) t$-I} e-iurC&, t >o 

Denote the zeros of the function G(cz) in the domain C* by tiis,, (n = 1, 2, . . . ). The first 
root 6, is real, but the other roots are complex 

6 Zm +I =*h [d, - ic, (-l)j] (m = 1,2, . . . . j=O, 1) 

The numbers z,,, = c, +ti,,, are evaluated by iterative formula (1.14) in which the function 
cp(z) should be taken as 

‘p(z) =(l +%%)-'[-(I ty)K-lz2 - (K2 t l)K-' - (1 - Y2-yz)e-Z] 

Furthermore, let 

K:: = (n-y) Y2 
r‘(l t 7r-Qn) 

r(M t n-‘&J 
, Xg=exp + $ lnGe (x) bx 

x2 ts; 
) 

G,=~e,[~~sin26,t~6,c0s26,t26,t26~~(’/I~sin26,t6~~] 

en= (K,’ - 6; - K sin26,)-’ 

(1.22) 

If we compute the integrals in (1.21) by using the theory of residues we find the following 
formula for the contact stresses 
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T(x) = i-- 
T $_Ls+ E KO% (PO 4Fl 

n=l G, 
)&(” - 1x1 )I&, 1x1 > Q 

n m=l /3, -6, 

By virtue of the Tauber-type theorem, (1.15) implies the continuity of the tangential stresses 
Z(X) at the points x = +G, namely, Z&Z) = cup. 

2. THE PROBLEM OFTHE PRESSURE OF A FINITE STIFFENER ON AN ELASTIC 
LAYER WITH FRICTION AND ADHESION 

Let us consider the plane deformation of the elastic layer (+= < x < +oo, -b c y c 0) linked to a 
rigid foundation and stiffened by the finite stringer (-a < xc a, -b < y c 0) (Fig. 2). The cons- 
tants of elasticity of the layer and the stiffener are the same as in Sec. 1. The stiffener is 
impressed into the layer by a normal uniform load of intensity p and is stretched by forces 4 
and Pz concentrated at the tips. The contact area is divided into the adhesion zone (-c, c x c c,, 
y = 0) and two zones (-4 < x c c,, y = 0) and {cZ c x < 2, y = 0) in which Coulomb friction acts. 
Let us find the points -c, and c, and the contact tangential stresses Z(X) along the line 
-c, < x < c,. 

The expression for the axial deformation of the stringer corresponding to (1.1) has the form 

in the case considered. For the stringer to be in equilibrium it is necessary that the condition 

u 
j- 7 fx)dx =P* -21 (2.2) 

--iI 

should be satisfied. 
In the case when 

i 

0, 1x1 >a 
{ 

0, 1x1 >a 
try = 

-p. 1x1 <a’ 7xy= 7(x), 1x1 <a 

the solution of problem (1.3) for the layer, by virtue of (1.4), has the form 

(2.3) 

where S(r) is the function specified in (1.8). If we substitute expressions (2.1) and (2.3) into 
relationship (1..5), change the variables and introduce the notation 

(2.4 

we obtain the Prandtl-type integro-differential equation 
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-b 

FIG.~ 

O<t<X, X=h1+Az, ^lo=lJpby(l-v)-’ (2.5) 

where yis the parameter specified in (1.8). 
Since the conditions of Coulomb friction are satisfied in the zones -a < x c -c, and c, c x < a, 

we have 

T(X) “‘pp,-u<x<-cl; T(X) =/.lp, c2 <x<a (2.6) 

(p is the coefficient of friction). The different signs in front of w show that slippage occurs in 
the opposite directions when x belongs to the zones (-a, cr) or (cz, a). Let us extend the 
validity of Eq. (2.5) over the whole real axis. To do so we introduce the functions (T) and 

x0 (VI = 

We then obtain 

(2.7) 

+x_(t) +x+(r), -=<t<- 

Let us use notation (1.10) for the functions @:(a) and take into account the Fourier integrals 

@G (Q> = ix+@+ .$)e ‘aEd[, @pl(ol) = 7 x_ (t)efUEdt _m 

By virtue of (2.7) and (2.2), we have 

V[ j ~~(q)&]=~ ~e”Y(“l+ho)(P~-PI)-~Pf(~)t 
A, -ho 

+ (icl)-‘g[l _e”Y(h’ ‘td _ efa(h, + b) + p] 1 
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In a manner similar to that of Sec. 1 we obtain the vectorial Riemann problem 

G(~) [Q;(~) _ (ia)-lo(l _eia(*l -*,I _,ia(*l +*,I +&a*)] = 

= - ja [a; (a) t p*a; (a)] t i&e (*I + *,I (Pz -P,) t (eia*- l)P1 t 

+ “fog0 (a)efa*l icu, @I (a) =eiar*@,; (a), -00 < (Y < t m (2.8) 

We take into account formulae (1.12) and introduce the functions 

9: ((y) =a< (a) t (ia)-‘U(:‘a(hl + ‘0) - eicr’) 

y;(a) =@;(a) t (ia)-‘o(e-‘a(“o + *2) -e-la*) 

cp’z (a) = -ia@: (a) t e ‘a(A~-A~)(P2 -PI) tP,, &(a) =-i&;(a) -PI 

- iAi 
q*(a) = I;----- 

iB; 

n=1 f_Y+ip, ’ 
QOI)= $L--- 

n=l a+iG, 
(2.9) 

The quantities &i/3, are the poles of the functions G(a) and gl(a), but *is,, are zeros of the 
function G(a) that were considered in Sec. 1. The coefficients A,’ and B.’ will be evaluated 
later. We rewrite problem (2.8) in the form 

K+ (a)X+ (a) IV\ (a) - (icu)-‘a--e”YAIG(ol)]-l [v; (a) t *fog, (cr)e’~(ho-h~)]) t 

t(ia)-‘u-St-(~) -\k+(ol)=[h’-(ar)X-(a)]-’ {v;(a) -e-icu(*o-*~)[(ia)-‘uG(a)t 

+ *fog1 (cw)]) + (ia)-‘o--~-(a) -q+ (a) 

K-(a)X-(a) {y;(a) - (ia)-lu-e-iQ*[G(a)]-’ [&(a) - Tog1 (a)e-ia(AO-AI)]j t 

t (iol)-‘a--52+ (a) --w-(01) = [K+ (a)X’ (a)]-l {'P;(a) t e'"(*~-*~) [-(ia)-‘uG(a) t 

+ ‘yogi (a)] \ t (ia)-‘u - a+ ((u) -W(a) (2.10) 

Let us choose the coefficients A.’ in such a way that the functions Y’(a) and Y-(a) elirn- 
inate the poles of the right-hand sides of equalities (2.10). We then have (n = 1, 2, . . . ) 

res ~[K-(a)X-(~)]-l~-ior(A~-A~) 
Or=+@, [@a)-‘Wa) t TogI (4 I -q+ (a) I =0 

res {[K+ (a)X+ (cY)]-‘~‘~(~~-*~) 
(Y=f& 

[-(ia)-‘oC(a) t *fog1 (a)] --*-(a) ] =0 

whence we find the explicit formulae for A,’ 

A;; ze-8n(*, - *, ) qn, A,=e-Pn(*o-*a)qn 

1 
(v+Yo 

KK_ Sin*&--#, 

?4KSill2&, + & 
1 

The values K,, and X,, were specified in (1.20). 
Let the choice of the coefficients B,’ ensure the validity of the principle of continuity. 

According to Liouville’s theorem and because of the fact that the stresses z(x) are bounded at 
the points x = -c, and x = c, we then find the solution of problem (2.8) 

@t (a) = 
WI (Or) e’aXo2 (a) 

K+ (a)X+ (a) + K- (a)X- (a) + 

a(1 t efcrA) 

ia ’ 
@i (0) %-forh@~ (a) (2.11) 

@2’(a)=-(ia)-’ {K+(0l)X+(a)o~(a) teia(hO-kz) [@a)-‘uG(a) - 

-rog1(ol) +p1--p21 -pII 

*i(a) =-(ia)-’ IK-(a)Xs(a)ol(a) te-ia(ho-h~) [(ia)-‘uG(a) t Tog1 (a)] tP,] 

ol(a)=-(iol)-lu+~L-(a) t*+(a), 02(a) =-(ia)-‘o+n+(a) t W(a) 

from (2.10) and (2.9). 
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The functions Q;(a) and Q;(a) are analytic at the point a = 0 if and only if the conditions 

(K+ (cY)x+(01)w2(01) +,lO(ho --%) [(ia)-‘aC(cY) -“fog, ((II) +P,-Pz] -P*]&_o=O 

fK-(or)X_(ol)w* (a) t,-ia(ho-h~) [w-‘~G(or) t7og1(43 tp11 a=0 =o 

(2.12) 

hold. Taking formulae (1.17) into account we can rewrite equalities (2.12) in the form 

hi =d*-o-‘(Pi +A; -&) 

x2 =d*-a-‘(P2 t&-B;) 

d*=dotL2tA&*:= id 
- B,: 

,B;= I:-- (2.13) 
n n=l p, n=1 6, 

Equalities (2.13) ensure not only that the functions Q:(a) are analytic but constitute the 
non-linear system for finding the parameters 4 and 4. 

System (2.13) also implies the condition of equilibrium (2.2). 

Actually, if we take into account relations (2.4), (2.7) and (1.10) we can write condition (2.2) in the form 

which, by virtue of (2.11) and (1.17), is equivalent to the following condition 

A+*-A;+B +*-B;+u(h, - &) =P, --P, 

but this equality is obtained from (2.13) by subtracting the second equation of (2.13) from the first. 

We will now choose the coefficients Bi. For the functions @t(a) to be analytic at the points 
a = tiis, E C* the infinite system of PoincarbKoch algebraic equations 

B++,“AO,(~‘;:+ 2 B’ ---) (n = 1 ) 2,...) 
m=l g+s, 

(2.14) 

must be satisfied. 
The quantities K,O, X,” and G, were specified in (1.22). System (2.14) may be effectively 

solved using the recurrent relations 

Let us obtain formulae for the contact stresses 

If we substitute (2.11) into (2.15) and use Cauchy’s theorem we find 

(2.15) 
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In the case when fi = Pz the relations 

hold and, as a result, the infinite system (2.14) with respect to Bi = B;;, = B,,, is simplified 

and formula (2.16) for the contact stresses becomes 

(2.17) 

By virtue of (2.6), formulae (2.16) and (2.17) lead to the conclusion that the tangential 
stresses r(x) are continuous at the points x = -c, and n = c, and are bounded at the tips x = +a 
of the stiffener. 

For all actual values of the parameters of the problem of the infinite stiffener numerical analysis has 
revealed the existence and uniqueness of the solution of the non-linear equation (1.18) defining the 
variable il. Moreover, the inequality Ir,,(x, O)lcpla,(x, 0)I holds in the adhesion zone. Plots of the 

contact stresses T?(x) for v,, =v=O.3, E,lE=2, b=l, h=O.Ol, p=l are shown in Fig. 3 for the 
different values of the coefficient of friction fi=O.l (curve l), p =0 (curve 2) and ~=0.5 (curve 3). 
Below we present the parameter A = 2db as a function of p for the same values of the parameters of the 
problem 

3. NUMERICAL COMPUTATIONS 

/J 0.1 0.2 0.3 0.4 OS 0.6 0.7 
h 10.62 5.62 3.95 3.1’2 2.62 2.28 2.04 

as a function of E,, I E with p = 0.3 (the other parameters are the same) 

l&/15: 0.1 1 2 S 10 
h 4.20 4.07 3.9s 3.66 3.27 

and as a function of b with p = 0.3 and E, I E = 2 

b 1 2 3 4 S 7 10 
h 3.9s 2,40 1.89 1.63 1.48 1.31 1.18 

0.8 0.9 
1.87 1.73 

100 
1.32 

15 20 
1.08 1.03 

Calculations were also carried out for the problem of the extension of a finite stiffener. Plots of the 

contact stresses Z(X) for v, = v = 0.3, E, I E = 2, a = 1, b = 1, h = 0.01, p = 1, p= 0.3 are shown in Fig. 4. 
Curve 1 is for Ps = Pz =0 (in this case, 4 = & =0.7656 and do not depend on p), curve 2 is for 
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F~2.3. F10.4. Fm.5. 

P, =Pz =O.l, (A, = 4 = 0.4945). and curve 3 is for P,= 0, Pz = 0.1 (A, =0.7926, 4 = 0.4592). A, and 4 are 

plotted against pZ with 4 = 0 (curves 1 and 2, respectively) and a plot of k, = 4 against e = pZ (curve 3) 
is shown in Fig. 5. The computations were carried out for the same values of the parameters of the 
problem as in Fig_ 4. 

In the case PI = Pz. the non-linear system (2.13) always has the solution 4 = &, and moreover, it is 
unique. If PI z Pz, the quantity Pz must satisfy the condition Pz* < Pz < Pz * * for arbitrary PI. In particular 
for the same values of the parameters v, vO, E, I E, n, b, h, p and p that were adopted when plotting Figs 4 

and 5, system (2.13) is solvable when PI =0 if and only if 0 C Pz < 0.475. When P2 = 0.475 we have ki = 1 
and 4 = -0.65, but when Pz > 0.475 a value of J., E (0, 1) that satisfies system (2.13) does not exist. 
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